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INTRODUCTION J34 7 6 4\

This report describes the work performed on the Digital Adaptive
Control Research project during the fourth quarterly period ending
31 January 1964. In order to provide a consistant level of documentation,
this report covers only work performed during the fourth quarter. Summary
report No. 1544-5 is a synoptic survey of the complete study.

Section II comprises the Theoretical Studies made during this period,
and includes a general basis for controls of the type being studied
based on plant description by Volterra Series. The previously develope:d
control methods »f the project are identified as special cases.

Section II1 identifies the Computational Requirements of a control
computer for this system. Feasibility of on-line operation with relatively
modest computers is shown.

Section IV presents a variety of Experimental Results obtained
during the period. Most notable is the hybrid simulation with filtering,
which is a simulation of the complete control process.

Section V is a glossary of all equation and simulation symbols used
in this report and all previous progress reports.

Section II is largely abstracted from a paper "Control Without
Model or Plant Identification" by J. Zaborszky and W. Humphrey, authored
during the period, and submitted to the papers committee of the 1964 JACC.
Some non-substantive revisions have been made by J. Zaborszky and E. Buder
in preparing this report. Section III is the work of R. Janitch, and
is based on his previous work in programming the EM-5000 computer in
the hybrid simulator. Section II1 and IV were compiled by R. Janitch
and L. Woltmann based on hybrid simulation runs made almost continuously
in the reporting period. Section V was compiled by E. Buder.

The analytical studies of Section II were performed under contract
NASw-599. The simulation studies (Section III and IV) were funded under
Emerson Electric's R & D program.

R v Hol
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II. THEORETICAL STUDIES

Introduction

A pilot flying an airplane is constantly identifying the plane's
behavior without doing so in terms of coefficients of differential equa-
tions, transfer function, or even in terms of Volterra kernels. What
the pilot senses is simply the current response of the plane alongside
its current sensitivity to control action, both on the basis of the
immediate past and extrapolated into the near future.

Because the human pilot is an excellent adaptive system, within
his limitations of speed, the success of adaptive control may lie along
lines characterizing his operation. This paper attempts to explore such
an approach.

Assumptions regarding the controlled plant in this paper are very
general and valid for almost all physical equipment. Specifics like
assumptions of linearity or a particular order or of slow variation
of the system are avoided in the general development. Information regard-
ing the behavior of the plant is to be derived solely from potentially
noisy measurements. The output quantity and the control variable, including
possibly a few derivatives, are available for measurement; but not the
complete "state" vector, the dimensionality of which is unknown under
the assumptions made.

Assumptions

The application of the control method of this paper is restricted
to systems which produce continuocus and bounded outputs, x(t), when
excited by continuous and bounded inputs, u(t). The input-output relation-
ship of such a system is a functional which maps the Banach space of
continuous functions over an interval onto itself. If such a functiomal
is continuous it can be approximated over finite time intervals arbitrarily
closely by a finite functional polynomial of the form;

S T - +
: = coee [ 1, 4 o) A4t
1. x(e) = y(£) + JZ=1 /0 jo LG R AR 6,) 4y :

where hj are the kernels of the functional polynomial fit.

If the functional is analytic it can be represented by an infinite
series (J = o) of the type of equation 1, a so called Volterra Series
or functional Taylor Series; h, are then the Volterra kernels. 1In
Fquation 1, y(t) represents the~ free response that would occur in the
absence of any control imput, u(t). It must be remembered, however,
that equation 1 does not imply superposition. The reason is that the
h. kernels are not unique, they depend on y(t) just like the coefficients
ol an ordinary Taylor Series depend on the point around which the expansion
is obtained.
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Note that only the existence of a relation of the form of Equation 1
is assumed, not a knowledge of the kernels or any intention to identify
them. This takes in a very broad class of systems. Continuous nonlin-
earities and time variations are permitted without assuming any particular
order of the differential equations or any knowledge of the speed of
variation or the existence of the nonlinearity. About the only features
excluded are discontinuous nonlinearities such as relays in the plant,
but of course, if there are any relays in a control system, they are
not likely to be in the plant. Discontinuous time variations are
permissible if their occurrences arc well rccognizable such as the staging
of a missile.

Extensions to more tham one output or control variable are direct.
Representation of the Response of the Plant and Its Sensitivity to Control
Action

The specificcontrol variable functions considered in this study
are plecewise constant.

2. u(e) = u kT < t <(k+1) T |uk'S_U

This form of the control variable is almost inherent in any coutrol
which relies on an in-line digital computer as is assumed here.

The present time will be t = nT and an nT second length section of
the latest signals x(t) and u(t) will be kept in the computer memory.
Then for t = 0 using a functional power series of the type of Equation i
for the interval 0 < t < nT and substitutuing Equation 2;

J n-1 n-1
= anee [/ .
3. x(r) = y(t) + Z z : Akl kB "kl...“k.
i=1 k =0 Kk =0 . ’
1 3
where by Equation 1 through 3;
. . e T L << AL
K K
f < e [
[ hj(t, . tj) d ‘t‘l d‘t'j XTSts !
4 < le jT
= k+1)T k,+1)T
Akl kj(t) (k+1) (J
h.(e, €. ... DdF. ...dE, (X+D)T =
f [ J(’ 1 ?'LJ) 1 J(
\ KT kJT
with X = max (ky, ky, -« kj)

(ki+1)T for k. < X

P
i

t for ki =X

(F =i

t
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Equation 3 can be rearranged as;

n-1 R
5. X(t) = Y(t) + E :E:: A‘r () u
k=0 =1 K

k

where usually R = J and a _(t) stands for a with k repeated
: 1 T k,k,...k

r times and from Equations 3 and 4, considering the symmetry of the kernels;

k
6. a_ () = A (&) + E ' (r+l) A _ (&) v .
K K- — ko, k-1 k-1
i=1
k i 4-3{,. '
+ LA (rTZ). A (&) u, ., v . + ...
2 Y. kr Kei k=1 k-1 k-3
i=1 =1 R
where J}j is the Kronecker Delta and with reference to iquation 4
A stands for e Tt Lo
kr,k-i,k'j Ak,k,...n,k i,k~j
with k repeated r times.
or more generally,
1
6a. a t) = — A M , U :
SO D A o Mgy U g
U <
h R
where 1
R-r R-r. -r R-r., ...-r ( Z Ty )
6b. M - 1 172 1 R i=1
(k2 E § ------ E R
=i = =l !
T, 0 T, T ]:I; x,
. T. r T
: U -
e U Yk kel k=R
6d. A, = * *
<o T AT e 2L R R oe)
and z denotes sumation over all different A(k}
<k>
which have significant contributions.
Defining vectors:
- (D _ (1) _ . T
7o X =x ]le =y ]le T
-, A
A (8) = o r i=0,1, N-1
Rx1 r=1, 2, R




SIS NN U SES NN GUU GNN GNN OGN OUR OO B GOSN BB BN B M e -

Emerson Report No. 1544-4
Page 5

where x can be a state vector if N is the order of the system from
Equation 5

v
o

n
8. x () = y(+y A (Ouy *
k=0

fuch a representation is possible for the class of plants considered
since for this class, functions y(t) and A (t) (where (k> indicates
any of the ordered sets of subscripts used 1fi equation 6) will be contin-
uous and repeatedly differentiable with respect to t, except possibly

at t = iT, for i an integer, where higher derivatives of A (t) will

be discontinuous. Then truncated Taylor series representations can be
found for, respectively, y(t) and %{k) (t)

(i) P L1 P'i
SRR A et
. pP= :

t<kT
P >
A E _ p-i < ]
(1) Zp=i Ay p- Gopr (EKD KT<t < (k+1)T
10. A (t) = <

k>
(H+DT < ¢t

Finally for a continuously, if arbitrarily, time varying plant

S

— = - 8
11. A(k) p+ A(n-h) p+ gé% A(n) ps* (-hT)
~wmridad
1la. {k-h> =<k1-h, ky-h, ... kj-h>

= -h 2
if <Ky =<Ky, Ky, won Ky and kyh Z 0

Probably S = 1 is sufficient for most plants.
Equation 8 can be rewritten for £ Z nT

12 x (t) =x (£) +A (£) u

where

n-1

13. x () =z(t)+Z A (8) u
k=0
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represents the current response of the system at t 2 (nT) resulting

from its initial state at t = O (the term y(t) ) and the v, , k = 0, ...n-1
control steps applied during 0=<t<nT. The last term in equation 2 iden-
tifies the effect of the control variable u_ which will be applied

(n-1) T<t<nT; A then is the current sens?.tivity of the system to

this force. Of course A u 1is a column of polynomials in u_. Note

that in spite of its form equation 12 does not represent sugerposition
since the sensitivity én(t) is not a unique constant of the plant, but

a function of past states y(t) and past control forces applied to

the plant. Equations 12 and 13 represent a kind of ''canonical equations"
describing the current expected behavior of a plant which may be linear
or nonlinear, stationary or time varying. These canonical or standard
equations define the current behavior of this general class of plants
when controlled digitally with a first order hold. The coefficients

of this canonical equation can be computed, if the plant is known,

or determined from the signals of the immediate past as is proposed here.

Both current response x_ (t) and current sensitivity A (t) are
fully determined by equation 6-12 provided the present parameters A (npps+
and y_ are identified. This represents identification of the current
respogse and sensitivity to the next input step. It does not, however,
identify the plant in the normal sense.

A plant is identified when a relationship (differential equation,
transfer function, Voltera series, etc.) is established for it which
permits computation of the plant output for an arbitrary input and an
arbitrary initial state. What is identified in this study permits only
the prediction of the response for the existing past conditions of state
and control forces applied in the past, under the influence of the
control step ahead which is of a strongly limited nature. In this sense
then it is not plant identification, but identification of current response
and current sensitivity to control force.

- . . . P B P TR o o S T T . PR——

v

Considering equations 9 and 10, equation 8 can be rewritten in
the form of
P

14, (t) = e
= é;ggket

which is simply a Taylor series expansion (ideally P = %) of the output
and its derivatives. The coefficients g e 2Te, by equations 9 through 11,
linear combinations of the A and the y_ coefficients. A different
combination will arise for evé¥§ Eﬁ%erval unles = u, for all k and i.
Consequently there will be a separate series of the form of 13 for every
interval T.

kT=<t < (k+1)T

Now if it is assumed that the signal x (t) can be measured exactly
without noise effect then a definite set of g o can be established for
each interval kTst < (k+1)T. Equating these %o the expressions for Bre
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obtained from equations 6 through 11 a set of simultaneous linear equations
results which uniquely determine the A and y_ coefficients provided
the number of coefficients and intervaf§>igsgioper1§ coordinated.
Specifically for the first term in Bre

n

S P
_ P S f ey P8
Bt y @ D My 5 Uen-ts Ay pst (PDS(-(-m)T)
S=0

p=e <n> h=n-k-1

-(n- s _ p-e
* Ugnts Ay ps- DD ((k-D)T) +ye

k=0,1,2, ... n
e=20,1, 2, ... p
where notations z: s M(h)’ and U<h-H> are defined in connection with

<n>

equation 6.

This will yield a sufficient number of equations provided

16. n = 2 A (S+1)+1
where 77 is the number of the {n) sets which are considered significant
and the determination of which is desired.

Equations 15 will be independent provided the u, . are not all identical
as they would be, for instance, when the limit U 6t ju| is called
for continually. When this latter situation arises, it still would be
possible to determine combination coefficients (gk = g ) which will
-_--v-rwl#no- +ho reanmnge ae lToano ae 11 =11 dia mn'ini-a-i-npﬁ hiiF ancr AvraTanid Am
of the sensitivity to the choice of u would be lost. Basically a different
control policy from the one considered in this paper is called for when
the available control force is so limited that |u| = U is used most of
the time. Although an assumption of exact noisefree measurement of x(t)
is not realistic, it is no less realistic than assuming a perfectly
identified plant and a perfectly identified state vector which are the
basis of the major part of the extensive optimal control literature.
In both cases these idealized assumptions have wvalue in the sense of
establishing idealized reference points.

When the measurements of x(t) and possibly also of u, are noisy,
the problem of determining the A and y_ coefficients changes
from the direct exact computatioﬁﬁ>fpgquationpls into the correstponding
statistical problem of the optimum estimation of a set of parameters on
the basis of measurements. A wealth of statistical techniques has been
developed for this general problem, the choice depending on the nature
of the uncertainties in the measurements and the extent and character of
statistical information available. This problem will not be pursued
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further in this paper, although work is continuing for establishing

idelines of choice in this area. Before passing on, a mean square
estimation for stationary noise will be outlined, nevertheless, as an
example (not implying the preferred technique).

Let us assume that measured values E (t) and Q respectively of
x(t) and of v, are contaminated by stationary, uncorrelated noise.

17. §(t)
18. Q K =Y + m

and that the noise swamps all coordinates of x above the Z-th measured
derivative. Then let the following nz integrals be established

il

x(t) + n (t)

k.T 2

' {kikj} & EngEZ ®) -« Z: (e (e-2) ! Pke £ ] oS 2=z
i

vhere g, 1s as defined in equation 15, but u  is replaced by N > and
{k j‘ are n distinct sets O<ki< n, 0« kj< n, and kj> ki'
Necessary conditions for optimum mean square estimates of Azn> s

and Yy, are then

aI{ } &1{

z k, k z z k.k 4

EE: 1 i 1 - ji: 1 i3 -
20 z=0 Az d A<r;>p st 0ot z=0 Az d Ye °

where the A._ are weighting factors such as the variances of the correspond-
ing noise.

Equation 20 yields a set of linear equations equivalent to the set
of equations 15 in the noiseless case. The integrals implied by equation
20 would be found numerically from the measured data.

Control Policy

Equations 12 and 13 can be rewritten for t = (m1)T

21, x ( (n+D)T) = En( (n+1)T) +-én( (n+1)T) u
n-1

22. x ( (D)D) = y ( (w)T) + ;) A (DD,
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At this point it is necessary to specify the desired value of x
at t = (n+l)T. This will be denoted by ¢ ( (nt+l)T) and is an N dimensional
vector, which is independent of u , x and ¢ are not actually state vectors
since the order of the plant is aSsumed to be unkown. Furthermore, all
physical equipment has a very high actual order or is, in ultimate
analysis, a distributed constant system. Consequently, in all practical
control situations there are large numbers of uncontrollable modes and
the order of the system used in control considerations is only an estimate
of the number of modes which are relatively more important. Fortunately,
there 1s a tendency for satisfactory control for a reasonable estimate of
the order used for control considerations. This will be illustrated in
the sequel.

In this spirit N will be regarded simply as a fixed number which
is not higher than the order of the system.

The aims of the control could be identified by a variety of perform-
ance criteria. To make this discussion more concrete the following
specific criterion will be used.

23. Min [_}_{_' ( (n+1)T) -c' ( (n+1)T):] K [§ ( ()T -c ( (n+1)T)]
u
n

where K is a positive definite matrix, primes denote transpose of
matrices, and

24, lun] < U

The aim is then to select u_ in such a way as to minimize the positive
definite quadratic form (Euclidign norm if K is the unity matrix) in
equation 23 subject to the constraint on u . Essentially this amounts
to reducing to a minimum the distance measured in the N dimensional
manifold between the actual and desired states at t = (n+l)T. A necessary
condition for satisfying the criterion of equation 23 is that the deri-
vative of the bracket with respect to n he zara  Thak fo onseo
equation 21.

[vs

du

0 - = 0
25. dunén ¢ @DK [z DT + 4 (DT w (1) T)]

This clearly is an algebraic equation of order (2R-1) in u_. The

order is always odd; consequently, there will always be one real solution
which signifies a minimum but the possibility exists for more than one
real solution some of which may denote maxima. 1If the solution for u

of equation 25 resulting in the smallest minimum exceeds U in absolute
value then u = U is to be used with the proper sign.

If equation 25 is strongly nonlinear, a complete solution for all
roots may be required along with an analysis of which yields the desired
minimum. In most cases, however, a simplified way of finding the desired
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u  can be found which is illustrated in the following.

Simplifications

In the broad class of systems considered here, the higher order
terms in the above working equations will become progressively smaller
as T is reduced. Eventually only the first order terms will be signi-
ficant. Selecting the optimum T which would be accomplished in a learning
process is outside the scope of this paper. It seems, however, that the
practical cases would tend to be R = 1 and R = 2, considering that beyond
R = 2 the number of terms begins to proliferate prohibitively. It then
is desirable to devote some special discussion to the cases of R =1, 2.

Case R =1

First the special forms of equations 21, 22, 15, 10, 7 and 16 will
be written

26, x( (n+l)T) = §n( (n+1)T) + a ( (n+1)T)un

n-1
27. % ( (a+DT) = y( (n+1)T) +Z 2, ( (+)Thu
k=0

(1)
28. 3 = A (t)
(1) P S ' .
- ___2-___ - P-1 _ S _ )
29. A (©) -2 §S=E Apss TooyT (KD (10 (D)

P S n
0 B T > ji: (z)[jij “n-h Anps+(_hT)S('(n'h)T)p_e
s=0

h=1-k +n

tu, . A e(n-k+1))s((k-1mp'e] o

31. n = 2(S+1) +1
Significantly, an explicit solution of equation 25 becomes possible

al (D)DK [x (D) -¢ ((a+1)T)]
32. u = a! (DK a_ ((a+1)T)

If further the parameter variation is slow compared to T, then

gk(t) = a. If reliable values for x are available, it is then sufficient

to use one interval for finding a.
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33. x(nT) = gn_l(nT) +a U4

Applying truncated Taylor series to estimate En_l(nT)

34. x _,(oT) = A x ((n-1)T)

where
r— e
1T T2 . . 1%/p!
™Y -1y
34, A=
0 0 - - - ™ eamn] D

In which case x((n-1)T) is a P vector and x(nT) is an N vector in
equation 34 with P+12N. If P + 1 = N, which also represents the actual
order of the system and the system happens to be linear, the A can be
viewed as a crude approximation of the state transition matrix. The
actual state transition matrix can be used in these equations for com-
parison purposes in studies.

Now sensitivity a can be computed as

x(nT) -A x ((n-1)T)

u

35. a=
n-1

and from Equation 25 relation defining the selection of the control force

A S N N N BN BN BN B B A .
<
=
1

— for the next interval becomes
a' K [A][x(sT) - & ((a+1)T)]
36, u = —
n a K a

Iun|S§U

If the measurements of x (nT) are noisy or the plant is fast time
varying, then a must be estimated from several past intervals. A version
of mean square estimation for stationary plants is mentioned here as an

example
d Vo
37. ¥e, k§0[§'((n-k)T) -x' ((n-k-1)T)A'-2 un_k_l] E[z((n-k)T)-';Az((n-k-l)fl‘)-gun_k_l] -0
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here W is a weighting matrix and k is the number of past intervals kept
in the memory. Equation 37 represents a set of algebraic equiations
which is a necessary condition for the best estimate of a.

Case R = 2
Again the special versions of the working equations for R = 2 will

be listed:

38, x((n+1)T) = zn((n+1)T) +§n((n+1)T)un + §n2((n+1)T)un2

n-1 B
39. En((n+1)T) = y((nt+1)T)+ 2: [g_k((n-!-l)T)uk + ng((n+1)T)uk2J

k=0
I
= (1) (1) i (1)
40. g = Ak (t) + EE% Ak,k-iuk and §k2 = Ak2 (t)

There will then be the following coefficients to find Akps-’ Akps+,
e A A
- -7 k- - + ... - +
A% (k-1)ps Aie( Do *k(k-1)ps M (k-T)psh, oo, Klpst,
and yp giving a total of 0{ = 241 in conjunction with equation 16. So

if S = 1 which should be usually satisfactory, then it is necessary to

keep a total of n = 2(2+I) 2+1 intervals in the memory to identify the
response and sensitivity of a system represented by the R = 2 case.

The largest possible value of T would, of course, be n but T = 2ns4 will
probably be satisfactory giving n = 17~ 25. A corresponding number of

not completely overlapping intervals would be needed for estimation in
conjunction with equation 20. Further reduction of the number of intervals
needed (e.g. by choosing S = 0 or I = 0) might be possible in many instances.

Some additional study of equation 25 for the selection of the
optimal control force u is indicated.
du'
With R = 1, A reduces to a column matrix a_ ((nt+l1)T) also —2 = 1,
- -n dun
and termén u varies with u in a manifold consisting of a straight

line which will have a unique nearest point to c((nt+l)T) as given in
equation 33 and 36.

With R = 2, A contains two columns and A u_takes the form A u =
au+ §n2u as shown in equation 38 which indicates variation on a

parabola in the manifold of the plane containing vectors a. and gnZ.
Since the distance of ¢ from the plane of this parabola is fixed, the
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minimum distance between c((n+1)T) and x ((n+1)T) will be reached at
the u point along the parabola which is nearest to the projection of

¢ into the plane of the parabola. It is then easy to see from the
geometry of the parabola that if there is only one real root of equation
25, this identifies a minimum. If there are three real roots, one
signifies a maximum, and the other two signify minima, the smaller of
which is needed. 1In practical cases where R = 2, the second order

effect should be relatively small which geometrically amounts to replacing
the straight line of the R = 1 case by a moderately curved line in the
vicinity of the desired number. This will result in a limited shift of
the optimum u value from what results when only the linear term is

considered. The other minimum then will be very large at a large u -

This realization permits the extraction of the pertinent root without

resorting to the full solution of the algebraic equation 25. Let, for
instance, the third order equation for R = 2 as obtained from equation
25 be:

41, 1 + ou + 3u2+ Au3=0

Where by the assumptions made § and A are small compared to o using
second order approximation at first

2

42, 1 + «v +Jvo =0

0

and assuming that v, can be approximated by

43, v _=u +u,d +u 6'2 + ...
o] o 1 2

Now substituting equation 43 with equation 42 and assuming zero
value for the coefficients of all dlStlnCt powers of 4 sufficiently

BRI DRI PSR 1, ARy S S PG Al B e T Y e

~ L 2l eqewceva 7es au40 fcals LU
44. “o='o('1' “1='}l§ Ug T ',2_('5

In general

45. u = Lﬁ}r] k Where

46. Z qy9p-i-1 k>0 qo=1

Now let

47. u=v +v, A +v 412 .
o 1 2

and substituting this and v_ in equation 41; then equating individual
X 0
coefficients of A to zero,

’
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3
v
_ o
V1 7 o+ 2 v,
2 2
_ 3v0 vy + ofvl
Vo T oL + ZJVO
or in general k-1 k-1  ke-i-j
421;1 ViVi-1 ¥ :L:ZS ; ViViVk-1i-3-1
48. v = - o< t2 Jv,

Equations 44 through 48 then define the desired smallest control leading
to the smallest minimum, the one nearest the linear approximation. The
last equation converges fast and is readily evaluated by digital computers.
This approach avoids a search for the smaller of the two possible relative
minima. Extension to higher orders is possible.

Stability

Since the system is assumed to be unknown and unidentified, general
conclusions on stability during a control operation cannot be drawn.
It can, however, be observed whether the norm of the distance between
the state x and desired state ¢ as measured in the N dimensional manifold
is decreasing at least on the average. 1If so, the particular control
operation at least is stable.

The change of the error norm on the basis of equation 21 and 22
in step number (n + 1), assuming for the time being that ¢ ((n+l)T) = 0,
is

2 2
B, = || & ()T -] 20D ||
n n
49. =[y' ((m1)T) + z u o A (()D)] By((a+1)T) + Z A (@) Ty, ]
k=0 k=0
n-1 n-1
[y GO +ST o A (n1) ] Bzp(am) + A(mDu]
k=0 k=

where y for 0 < k<n-1 are known past values. With H = I, the unit
matrix, equation 49 defines the Eucledian norms. Equation 49 can be
evaluated during individual runs.

Proving that E, is negative for all x(nT) is sufficient to assure

n
global asymptotic stability by Liapunov's second method and Krassovskii's
theorem provided N is the actual order of the system. 1In fact, stability
igs obvious under these conditions. Such general conclusion, of value




Emerson Report No. 1544-4
Page 15

for reference purposes, might be drawn for specific plants which are
known.

Let us then assume that the Volterra series of the plant as per

equation 1 is known, and concentrate on the single interval T beginning
at t = nT. Then with reference to equation 8,

50. x ((m1)T) = y ((n+1)T) + éh ((n+1)T) u

where y is now the free response resulting from state x(nT), and with
reference to equation 4 and 6,

(1)
51. An(t)= Aj

i t
52. Aj = -if ........ jhj((t), T, .. toat .. d‘t’j

t = (ntl)T
So

53. E=[3' ((@)T) +u! Al ((DT) ] H[3((a+1)T) + A_ ((n+1)T)Bn]

u|

BN
-x' (nT) H x (nT)

where u is defined by equation 25 as

du'

54. o AL (D)D) K[y (DT + A (DD w ] = 0

For the special case of a linear system R = J = 1 and

55. y ((n+l)T) = X ((n+1)T) =F (nT, (a+l)T) x(nT),

where F is the true state transition matrix, while u and a are defined

by equation 35 and 36, so that, with reference to equation 33 and with
c ((n+1)T) = O,

a((n+1)T) a' ((n+l)T) K
56. x((ntl)T) = (I + 2 (e DD X a2 (arDD) ) F (nT, (n+1)T)x(nT)

Then equation 49 takes the form

57. E = =x' (nT) M x (nT)

n+l
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where

58. M =H -F' (nT, (n+l)T)

K' a ((a-1)T) a' ((n-1)T) a((n-1)T)a' ((n-1)THK
a' ((n-1)T)K a ((n-1)T) a'((n-1)T)Ka((n-1)T)

I+

s
=
+

F(nT, (n+1)T)

Then by Liapunov's second method it is sufficient for global asymptotic
stability for matrix M to be positive definite. Furthermore, for the
stationary case where F(nT,(n+l)T) = F and a(nT) = a, a positive definite
M will be defined for a positive definite H by equation 58 provided

the matrix

1o
jo
1=

59. D=lI+ =

aKa |l

has eigenvalues of absolute value less than one. The experimental
results recorded in the sequel indicate that this condition circumscribes
well the stable regions of operation.

Since equation 54 is of third order im u_ even for R = 2, no closed
form for u is practical. Consequently, it is difficult to reach general
conclusions for nonlinear plants.

Assuming R = 1, however, limits might be established for the stability

of nonlinear plants, with ¢ ((n+1)T) = O when controlled by the linear,
R = 1, control law of equation 35 and 36.

LI 1T 15 assulkd LudL Lue sysceul 18 1nvarliant, then 1n equation SV
matrix én(n+1)T) is constant and determined for a specific system by

equation 52; so that, with reference to equation 35, the sensitivity a
becomes

J
j :

u

j=-1 .
n-1 énJ

u
n-1 j=1

provided A j are the columns of A .
=n =n
In other words, the sensitivity a that is used is a function of the

preceding control force for the R = 1 assumption when the system is
actually invariant.
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Then the control force is selected by equation 36 as

2( A9 KA

61. x(nT) = b' (u 1)g_(nT)
n-

Then with equation 50
62. x ((wD)T) = y ((aH)T) + JZ=1 A (b pxn ]

and with equation 53

63. E AV(x(nT) + AW((x(nT), u P

where
J h|

64. DW= +2 Zl[ b' (u _Ix(r) ] [ 3((+DTHE A _j]
j:

J
+3, (@ pxem iy 4]

65. AV =y'((otl)T) By ((ot1)T) - x' (nT) H x(nT)

Now a sufficient condition for stability is, by Liapunov's second method,
that

66. AW+ AV<<O for H=1 for all x(nT) and all u o

Considering that y ((n+1)T), the free response starting at t = nT from
state x(nT), depends only on x(nT) if the system is stable w1thout the
control, it may have a Liapunov function of the form V(x) = le“

then AV, as given in equation 65, is negative definite for H=

it is enough for AW to be nonpositive to show that the controlled system
is gtable. This may be shown for specific systems but the fact that

u o is present in equation 64 causes additional difficulties. u -1

itself is varying during the trajectory and is defined by equations in
the nature of equation 61 which are too complex to permit exact consider-
ation. Since u 1s constrained to 1u|SU, it may be possible to show
AW to be nonpositive for all u values within this constraint. The
system then would be proved stable but the condition is rather restric-
tively sufficient.
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ITI. HYBRID SIMULATION (FIFTH ORDER)

Introduction

The following system was selected for the hybrid simulation study:

1
s [(s +0.5% + 1][ts + &) + 57

G(s) =

This system was taken from the fifth order systems previously inves-
tigated in the all-digital simulation study. It was simulated on the
analog computer with a desired set of initial conditions for C (positionm),

¢ (velocity), C (acceleration), ‘C, and €. A hybrid run consisted
of driving the system from the position representing the inital condi-

tions to zero with the signals from the digital computer.

The hybrid simulation runs included in this section are presented
to illustrate the effect of using a finite Taylor Polynomial to approxi-
mate the state transition matrix, and to illustrate the effect of filter-
ing and prediction to estimate the state variables from sampled data.
The runs were made for different decision interval times (T), and for
different weighting factors (h). In all cases the values of T and h
were selected from the performance and stability boundaries for this
system. These boundaries were included in the last quarterly progress
report. The estimated unit step response, a, (O)] Ti/i! ] (fifth order

system; i =5, 4, 3, 2, 1) was held constant throughout each run. Also,
all computations were made in floating point arithmetic.

The runs, made with sampled (exact) state variables, obtained these
variables directly from the analog computer. The runs, with estimated
state variables, obtained them by filtering and prediction from sampled
data. TIn the hybrid 31mu1at10ns Wlth filtering, the fitting matrix
LildL wad udtu wad uUTL1IVEU 11vie ::aa.‘._, pLoulrLLLULL SLuLlIes. All Nypria
runs used least square polynomial fitting, fourth degree polynomial
fit, and a sample interval of 0.15 seconds. Also, eight samples of
data were used in all cases.

A. Sampled State Variables - Exact Runs

Hybrid runs were made for the system using sampled (exact) state
variables, and the exact state transition matrix from the all digital
study. These runs were then compared with the all digital runs to
confirm the accuracy of the simulation and results. These runs are
equivalent except for such effects as A-D and D~A conversion, computa-
tional round off, and a slightly different time origin, which are taken
into account with the hybrid s%mulatl The maximum available force in
the hybrid simu1a21ons was *10%units, whereas in the all digital simulations
the force was *10”7 units. The results were satisfactory, and closely
approached the all digital results in smoothness and settling time.
Typical results are plotted in Figures 1, 2, 3, and 4.



Emerson Report No. 1544-4
Page 19

B. Sampled State Variables - Taylor Runs

Figures 5, 6, and 7, are comparisons of hybrid and all digital
runs with known state variables and Taylor approximate state transition
matrix. These figures demonstrate the same conclusions as the previous
paragraph.

The hybrid runs with sampled state variables and the Taylor approxi-
mate state transition matrix were run to study truncation error. The
truncation error is the error caused by using a finite Taylor Polynomial
to approximate the state transition matrix. Typical results of this
study are presented in Figures 9, 10, and 11. 1In all cases, the trun-
cation error appears negligible, since settling time and smoothness of
response are still adequate for good control.

A series of runs were performed with this system to see the effect
of using different initial conditions. The resulting responses are
presented in Figures 13 and 14. The settling time and amount of overshoot
differed for each set of initial conditions, but the system exhibited
satisfactory control in each case.

Certain common nonlinearities were studied by another series of
hybrid runs. Figure 15 demonstrates the effect of a deadzone in the
applied force, and Figures 16 and 17 show the effect of position, velocity,
and acceleration saturation. The results indicate that adequate control
was maintained, and so the results can be judged satisfactory.

One last area was investigated with hybrid runs with sampled state
variables. 1If the actual order of a system is very large, it is likely
to be controlled for a lower than actual order. Figure 8 shows the
effect of controlling a fifth order system as if it were a fourth or
third order system. Successful control was possible in both cases,
and the control did not deteriorate in any objectionable degree.

|

==

C. Estimated State Variables - Taylor Runs

Hybrid runs were made for the system using estimated state variables,
and Taylor approximate state transition matrix. These runs were made to
study the effect of filtering and prediction to estimate the state vari-
ables from sampled data. Typical results are illustrated by Figures 18,
19, and 20. These graphs compare the hybrid runs with sampled state
variables and the hybrid runs with estimated state variables. Exact
comparison was not possible because the sampled state variable runs
outputed a programmed initial force for three decision intervals, whereas
the estimated state variable runs outputed a programmed initial force
for a different number of intervals. The results were satisfactory,
but usually not as good as those obtained with the sampled state variables.

A series of runs was made using different initial conditiomns.
Figure 21 shows some of the results of these runs. Also, Figure 12
compares the hybrid sampled and estimated state variable runs for a dead
zone in the applied force. The control illustrated in both figures is
satisfactory, but not quite as good as that obtained when the state variables
were directly sampled from the amalog computer.
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I1v. COMPUTER REQUIREMENTS

Introduction

Four major programs for hybrid simulation on the Emerson EM-5000
Digital Computer have been written and have been included in past quar-
terly progress reports. The last of these programs was chosen for this
section, since it was the only program which included the estimation of
the state variables.

Hybrid Simulation Program Description

This hybrid simulation program is written in floating point arith-
metic, and is good for plants of fifth or lower order. The estimated
state variables are obtained by filtering and prediction from eight
past values of the response, c(t). These eight past values of c(t) may
be obtained in one, two, or four decision intervals; i.e. eight, four or
two values of c(t) may be sampled per interval. Also, this program
has the estimate of the unit step response, a.(O)] , as an input, and
so it is fixed for all computations throughou% the entire run.

The block diagram for this program is presented in Figure 22. This
diagram is identical to the one included in a previous report, except
for the addition of the estimated unit step response block. This block
was added to the diagram since it most certainly would be incorporated
in future programs.

This particular program uses 800 storage locations, which does not
include constant locations and subrontine storage. Of the 800 storage
locations 227 are the floating point arithmetic instruction locations.
The addition of the unit step response block would add about 20 floating
point instructions. The following is a list of floating point arith-

Number of Add Instructions 92
Number of Subtract Instructions 2
Number of Multiply Instructionms 127
Number of Divide Instructions 6

Specifications for Applicable Computer

The only points considered in selecting an applicable digital
computer were operating speed and programming ease. One computer which
could be used is the DDP-24., This is a general purpose digital computer
manufactured by the Computer Control Company, Inc. Partial DDP-24
Spacifications follow:

TYPE:
Binary, core memory, parallel, single address with indexing,
and indirect addressing.
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and need not be realized in an actual control system.
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Functions of starred blocks are peculiar to the hybrid simulator,
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WORD LENGTH:
24 bit; sign/magnitude code.

SPEED: (including instruction and operand access)

Add 10 usec
Multiply 31 usec
Divide 33 usec

Add floating point
24 bit mantissa, 9 bit characteristic 116 usec
39 bit mantissa, 9 bit characteristic 323 usec
Multiple floating point

24 bit mantissa, 9 bit characteristic 97 usec
39 bit mantissa, 9 bit characteristic 376 usec
Add double precision fixed point 70 usec
Multiply double precision fixed point 204 usec
1/0 word tramsfer 5 usec
1/0 block transfer 166,000 words/sec.
MEMORY :
4,096 words, expandable to 16,384; all words addressable;
coincident current ferrite core; non-volatile storage. 5 usec

cycle time, 3 usec access time. As a special optiorn divectly
addressable memory expansion to 32,768 words is possible.

Estimation of Program Execution Time Using DDP-24 Computer

The floating point operations required by the previously described
program would require approximately 25 milliseconds on the DDP-24.
Including the fixed point operations required by this program, a safe
estimate of the running time per decision interval is in the neighborhood
of 30 milliseconds. A simulation run of 40 decision intervals would
take on the order of 1.2 seconds of computer time. However, of more
importance is the fact that real time control is approaching the realm
of feasibility with this program execution time.

If the computations for the unit step response block are inctuded
the program execution time would pe 1ncreased by 5 to 15 per cent.
Therefore, the DDP-24 computation time per decision interval would be
no greater than 35 milliseconds. The addition of the judgement functioms,
g (Am) and £f( A m), would most likely increase the computer time by
somewhere between 20 and 40 per cent. Also, if the program is expanded
for plants of tenth or lower order the execution time would be increased
by approximately 150 to 200 per cent.

Several methods could be employed to shorten the computer time
per interval. Instead of calculation of the unit step response, ai(o) s

every interval it could be computed only every "n'" intervals. Also,
another way would be to control to lower than actual order; i.e. instead
of estimating the function and all of its derivitives, estimate only the
function and its first few derivatives. The most obvious way to decrease
computer time would be to program in fixed point arithmetic, in which
case the computer time would be less than 5 milliseconds. However, this
does create scaling problems if a large class and/or number of plants are
to be controlled.
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V. MASTER GLOSSARY

The following master glossary has been prepared containing the nomenclature
of this and all prior progress reports, The previous quarterly reports
contain partial glossaries; and a conscious attempt had been made towards
standardization of notation throughout the various studies. However, the
diversity of authorship of the various studies, their extension in time,

and an observed prolification of symbols suggested a systematization.

In preparing the glossary very few redundant symbols were discovered.
In the few cases where two symbols have identical meaning, the identity

equation has been written under each entry.

A more common problem is the use of a given symbol in radically different
meanings. In such cases, the alternate definitions both appear under the
entry, together with reference to those portions of the progress report

to which each applies.

The hierarchy of symbolism of this glossary is as follows:

(1) English alphabetic symbols - Greek alphabetic symbols -
Notational conventions

(2) Lower case - Upper case

ranN ~_ - . .

e - - ———— PRpSUE R v

(4) General arguments - Specific arguments
An entry of the glossary contains:

(1) The symbol
(2) A verbal description or definition
(3) A defining equation or equations (where applicable)

(4) A reference to the progress report or study, where the symbol
is first defined and used,
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References to the reports are given numerical designations (1), (2), (3),

(4), respectively designating the four quarterly progress reports (Emerson
Report Numbers 1544 - 1, 2, 3, 4). Additionally origin in Digital Simulation,
Hybrid Simulation, or Stability Studies, is indicated by those phrases.

This glossary is believed to be exhaustive, with the exception that a few
symbols used in digital simulation studies were deliberately omitted as

being peculiar to the computer programming.



SYMBOL

a (Pk)

ai(O)

ai(-T)]

akr (t)

o

[N

(kT)

a (k)

a (0)

a(i)

INFORMATION

Numerator of plant transfer function evaluated at

k'th pole.

Elements of a

Estimate of i'th component of unit step response
vector a(0) obtained by averaging over past values,

Form of averaging finally used:
N

Z le ©in -]

40 =5

N
Z |» oD
k=2
Also equivalent form used in simulation
F. (0
EA O}

Estimated unit step response vector one interval
in past obtained by averaging over past values,

Has elements:

a, (-T) (cf. ai(O))

Cumulative sum of integrated kernels characterized
by having an index (and control action uk) repeated

r times.

1 E A M
af (o) = 77, <k> k> U ks
k <k>

Constant value of a (kt) for time invariant plants

Sensitivity vector, ratio of state vector change

to previous control force.

a=lx D) -2 x ((@-1)D)

L un-1

Estimated change in the weighted response state due

to the force m (kt)

5<kr)=xm[(k+1) T]
m (kT)

(k) = a (kT)

[N

Estimated value of the change in the weighted
response due to unit control force. Obtained by

averaging past values of:

3 (e = L-¢-nrd

m (-iT)

(0 = A [5 (-21), ...a (-NT)]

M

Exact unit step response vector at t = iT
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REFERENCE

Digital Simulation (1)

¢9)

L

Digital Simulation (1)

Hybrid Simulation (3)

(CY)

(2)

(€]

(2)

1)

Stability Study (3)
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SYMBOL INFORMATION REFERENCE

a (-2T) Estimated ratio of change in forced response state
to applied force for most recent interval:

!

a (-21) =

(D % (T -k (-2T) - d(-2T)
-2T)

( m (-2T) : ¢9)

2|

A (k) Weighted state transition matrix relating free
response at end of decision interval, to state at
start of interval,

o lac+ 1] - [+ ®] & w 2
Akl...kj (t) Integrated kernels of order j of Volterra functional
polynowmial fit 0 £t < XT

K
K (£, %, , 'ti) dT’l... d’?:j

(
I-ﬁ(l...kj =4I 1Tf’k<gt hj -

G +1)T (ke +D)T NKT <t £ (K 4H) T

~

. AT, . T
j . [hj(t T 4T d’rj
T

&X+1)T £¢ (4)

A Integrated kernels of Volterra functional polynomial
<k? fit

r r

= 2 R d
A <> Ak 1 (k-1) 2... (k-R) (t) enotes
one of the Akl...kj with k repeated r = T
(k-1) T, times, etc. (4)

times,

A Coefficients of Taylor expansion of integrated
<k> pt
kernels Ak (t)

0 t <« kT
=

k7 -kD)t kT t= (k+1) T
x Z. Ak ppo (TR SIS = (k+1)

p=o
P

P
t-kT
Z A <k 7p+( )
p=0

(k+1) T< t (4)

<n > p* Coefficients in the expansion of the Taylor co-

efficients A <k > pt into:

A = A

<k > p* <n >p st (-hT)S *)

€3]
A“j i'th state component of integrated Volterra kernel
evaluated at t = (ntl) T

(i) d t t
A= I f j By (6 T T G AT o= (i) T
n dt nT nT

(4)
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g

g
A, (©)
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INFORMATION REFERENCE
Taylor series prediction matrix 4)
j=i :
T / (G-i)! i<
Ai'
J 1
0 i>3
P+1

=
iz N
P+l = N

v 1y

Exact state - transition matrix Stability Study (3)

Matrix of integrated Volterra kernels

1,
ék(t) =a, (t) N x R (&)

Matrix of integrated kernels evaluated at
1) '
t=(n+1) T én(t) = [ Anj] Stability Study (4)

Transformation matrix for estimate of free
response at the end of present interval

C i(oﬂ = [AAiJ ¢ {-T)]

j-i/,, . \
AAii =T (j-1): for i = j

For Taylor series prediction

AAij = BBij for exact prediction Digital Simulation (1)

Derivative of denominator of plant transfer function
with respect to LaPlace operator evaluated at the
k'th pole Digital Simulation (1)

Combinationai vector

- 1

u = b (un-l) x (nT)

Ei (u -1y j) KA

¢ n~-l1 ~n -
u_ = i=1
n A i

e s
E: Yn-1 A1 Kl
j-1 i-1 Stability Study (4)
i imat £b (i). Stabili Stud

Represents best available estimate o (1) ability Study (3)

Unit step response Vector as defined by
a (1) = b (1) [kﬂ Stability Study (3)
L — [ S———

Computed force vector extrapolated one prediction
interval into the future

B = c [AA..] Hybrid Simulation (3)
[ S — 1]

Exact state-transition matrix as defined by
-1

[A} = [h] [B] [h] Stability Study (3)




' W N NN N N N N BE B am e

I

)
|

Emerson Report No. 1544-4

Page 41
SYMBOL INFORMATION REFERENCE
A
[B] Best available estimate of [B] . Stability Study (3)
[BBij] Exact plant response matrix for linear systems
J J L-3-141
b, p .
BBij = ik b (pk) exP(PkT)
k=1 ft=3+1
Digital Simulation (1)
c (t) Response variable also C (t) 1)
%1(0) Estimated value of i'th component of initial state
response applied one decision interval, T, earlier Digital Simulation (1)
%i(T) Estimated value of 1'th state component of initial
state response evaluated for time one interval from
present. Digital Simulation (1)
%ni(O) Actual value of 1i'th state variable in response to
force applied T earlier Digital Simulation (1)
coi(O) Actual value of 1i'th state variable in response to
initial conditions applied one decision interval,
T, earlier Digital Simulation (1)
c(i)(O) Total response over one interval
c (1) Q) =c ., + ¢ Digital Simulation (1)
oi mi
c Response state vector (1)
¢ (0) Estimated present state of system (1)
o B Computed force vegEQ;igﬁﬂnresentitime
2y 0) [K]
L
o} e
a; (0) [K] 2 (0)] Hybrid Simulation (3)
[ S
Ef (T Estimated free response state at the next future
decision interval
cf(i) (T) = 1'th component of T, (T) Hybrid Simulation (2)
C(i)(-T)] Regponse state vector evaluated at one interval
in past Hybrid Simulation (3)
Cf(i)(o) ] Estimate of free response vector at end of present
interval
cf(i)(o)] - [AA“] c(i)(-T)] Hybrid Simulation (3)
e ((n+l) T) Desired value of vector x at t = (n+l) T
of dimension N (4)
c(t) Response variable C(t) = c(t) 1)
Ci Value of i'th response state variable (2)
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SYMBOL

Ccc

W |

(k)
(kT)

al

1=

e; (0)

;M

e (T

INFORMATION

j'th component of exact plant forced response
to unit control force

J

j-1
cc, = Z [a (pk)/ b‘(pk)] P exp(p D)
k=1 I J-12 521
cc, = ao/ b, + Z alp,) /pkb' (p) exp(p, )
k=1

Response state vector evaluated at one decision
interval in the past

Estimated change in weighted state vector due to
free response evaluated at present decision interval

Ak = 4 (D)
Estimated change in response state vector over one

interval due to the initial state x (kT)
Combinational matrix

aa'
D= |+ g

Stability requires that the eigenvalues of
D<K1

1=
(=

m
=
o

Simplified way of writting resultant matrix

Lo S [0
[] ) ﬁ(ﬂ [H ’b‘(iﬂ

Transformation matrix for estimate of free response
at end of next interval
[ S ) . b I h]

[ I R 1 B R O

Index of expansion
P

2= Z Buet”
=0

Error (actual, measured, or computed) between the
i'th state variable of the desired trajectory and the
i'th state variable of the actual trajectory

Predicted error between i'th reference state vari-
able and i'th initial state vector, evaluated for
one decision interval in the future

'eli(T) = rp(i)(T) - Cf(i) (D)

Error state vector e =¥ - C

Predicted error state vector at the next interval

Change of the error norm between t = nT and
t = (n+l)T

E o=z (DD U -Mx D Wy
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REFERENCE

Digital Simulation (1)

Hybrid Simulation (2)

ey

(2)

Stability Study (4)

Stability Study (3)

nyuvitru SLULaLLloll \(£2)

(4)

Digital Simulation (1)

Digital Simulation (1)

)

1

4)

1544-4
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SYMBOL

E(T)

(=] = [=]-[°]

flE 1

&)}

fi(c,é,...c

L]

E(oT, (n+1)T)

Fi(O)

gi(co’cl""cJ-l’ m, t)

Bxe

G1(°)

G(i) or [G(iﬂ

INFORMATION

Weighted predicted error state vector at next
interval

E(T) = iz’pm - %(0) - ~=d(0) - a(0) m(0)

Matrix simplification used in equatioms

Norm of error state vector evaluated at t = (k+1)T

2
fEG+D) = 2CG)T) . % (Get1)T)

A design function of the argument [ ma(O) - ma(-Tﬂ

to prevent large corrections which might be caused

by measured errors in one interval

sm, t) The function coefficient of the derivative

c(l) in the plant differential equation

Exact state transition matrix for stationary system

F = F (nt,(n+l)T) for stationary system

Exact state transition matrix between states defined

by t = aT and t = (n+l)T

Cumulative vector sum of absolute values ofl&c,(o)
for previous decision times l

r,o] =[AcPenl] w )

Design function of the argument
[ma(O) - (M ] it is intended to emphasize
m (-T) -~ m(=-2T

changes following a well behaved pattern and de-
emphasize erratic changes. It is symmetric around
the argument value 1,where it is maximum,

The function defining the state variable

ey in the differential equation set

L]
¢y =8 (Cgr s wvr ey ™ O

Vector of Taylor coefficients in expansion

P
e
x (t) = Z Bie t kt< t < (k+1)t
e=0

LaPlacian operator form of plant transfer function

o= Ss)

¢ E(s) for linear systems

Cumulative summation of absolute values of control
force applied at past decision times

6 (0 = lm(-ZT)l +6,(-T)

Combination of other matrices as defined by:

6(i) =8 (1) KE (i) K
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REFERENCE

(1)

Stability Study (3)

(2)

1)

(1)

Stability Study (4)

Stability Study (&%)

Digital Simulation (1)

(€9)

¢9

%)

~
S0
~r

Digital Simulation (1)

Stability Study (3)
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SYMBOL

hj(t,“d., ee. X9

L¢]

' kY,

<k>

<k-h>

INFORMATION

Error state weighting factor

X, = hl

i WN i c(i)(t)

Index in expansion

= -hT)
A o> P <> pst (-hT)

= h=n-k

Kernel of order j of Volterra functional
polynomial fit

Weighting factor as defined by:

(o] - [0 &3

Error state weighting factor, The transformation

matrix w is a diagonal matrix with elements

i - - -
W= Wi—H h <1 E(T) =W ep(T)

Weighting function matrix

[ <[5 6 = [t ¢

Unit matrix

Integrated squares of residuals in mean square
determination of coefficients

A . and y.
. ij P
{x k, = E: e.
taE [gz (t) -‘ il (e-2)! ke
kiT

te'ﬂ ] 2 4t
Order of plant differential equation

Maximum order of Volterra kernel hJ(t,qfl,...'t

Index set

<k> = (kl, k2...kj> and ki-h >0

Index set

- = <k - < - -k
<k-h> <k h, kz h, ...kj k>

Norm of weighted estimate of unit step response
vector ai(o)]

K1 = wa, 0) w.oa, (0)]

J

)
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REFERENCE

Digital Simulation (1)

(&)

4)

Stability Study (3)

(D

Stability Study (3)

(2)

(4)
(1)
(3)

(%)

Hybrid Simulation (2)



SYMBOL

[d or

m (0)

m(t)

m(k)

m (kT)

w_\vy,
a

m, )

m' (0)

M <k>

=
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INFORMATION REFERENCE
Product of the predicted weighted error vector by
weighted estimate of unit step response vector
K2 = wiai(O) wieli(Tﬂ Hybrid Simulation (2)
Weighting matrix
ns
K, = (th) <+ S i=j fybrid Simulation (3)
o 1]
Positive definite (symmetric) matrix Stability Study (3)
Number of zeroes in plant transfer function Digital Simulation (1)
Actual force applied over the next interval
. m m' () > m
Mo T{m'()  if m = 0 O= m (1)
-m \ )

[¢) m'(0) = My
Control force or manipulated variable 1)
Stationary uncorrelated noise perturbing the
measurement or computation of the control force u (4)
Saturation force value of the controller
m, s U (1)
m(k) = m(kt) (2)
Control force applied over k'th interval
kT = t <= (k+1)T (1)
VVVVV e e e temem —m mee P
over next interval
ma(o) = -1(2/1(1 Digital Simulation (1)

(1) ]

ma(O) = c rp (T) -

B c(i)(o) Hybrid Simulation (3)

| )
Computed force over the next interval modified by
the £ and g functions
m,(0) =m (0) + £(Am) g (Am) Digital Simulation (1)
Modification of the computed force (1)
Multiplicity of occurance of term A <k>
%:51 R-rl-r2 R-rl...-rR R .
e Z E § Z ri)f
70 T30 R=0 =1
R o 1 )
;e




SYMBOL

m(kt)

n (t)

r(0)
r, (T)

D o)

INFORMATION
Manipulated variable state vector
Manipulated variable state vector evaluated at
decision interval kT
m (kT) = 6(i = 2)m (kT)
Increment in applied force Z&n1= m ©) -m (-T)
Combination matrix yielding change in error norm

at t = (n+l)T from state vectors at (nT)

B =2 (DM x (aT)

M=H-E' (T, (n+l)T)

I+K'a ((-D)T) a' ((-1)T)
a' ((-1T) K a ((n-1)T)

H

a2 (@-1T) a' ((n-1)T) K
a' ((a-1T) Ka ((a-1)T)

]
“+

F (oI, (oHl) T)
Number of samples since beginning of run

State vector of stationary uncorrelated noise
perturbing measurement of exact state vector x (t)

Dimension of vectors x and ¢

Poles of plant transfer function

ae . B o o . -

Ak(t), and x (&)

Index variable designating number of times a
specific index k is repeated in the control
sequence u (t)

Index variable, When the indices k, k-1, ,..0

are utilized, the number of repetitions of index k
are designated by r = )5 those of index (k-1) are
designated by Tys etc,

Reference (input) state vector

Estimated present value of input or reference
state vector

Estimated predicted value of the desired state
one decision interval into the future

Reference state vector evaluated at one decision
interval in the past
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REFERENCE

1) @ @)y

3
H
i

(2)

Digital Simulation (1)

Stability Study (4)

Digital Simulation (1)

)

)

Digital Simulation (1)

(4)

)

(4)

€9

(1)
(1

Hybrid Simulation (2)
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SYMBOL
R
8
S
t

u (t)
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INFORMATION REFERENCE
Maximum value of number of repetitions of a single
countrol variable W in Volterra series representation
usually R =J (4)
LaPlace variable 1y (2 3y W
Also index of expansion gf A k> pt in
= A
<k> pt* <n-h>» p* =
(-h1)® 4)
<n>» pst
s=
Maximum value of index s in expansion
A(k)pt=A<n-h>pi= § A s
Z <n>» pst (-hI)
5=

S = 1 for most plants studied (4)
Time 1 @ 3G @
When shifting time base is used; preceding decision
point is t = -T, current decision point is t = 0,
and next decision point is t = T (1)
Sampling interval of data inputted to control
computer Digital Simulation (1)

Decision interval., This is a fixed interval of

time which quantizes the control actions. The

control force is constant over any given decision
interval, (1)
Control variable time tunction

u(e) = kI t< (DT and |yl = v (%)

Error state element

: . 3 = = O
u = Tt c(l) for reference input r (2)

Constant value of control variable in interval
kT= t< (k+l)T; Also constrained by:

[ukl =< U Also identified with previously de-

" fined variables y o =m (kT) = m (k)

Alternately;
Coefficients of expansion of quadratic approxi-
mation for ideal control force Yy in powers of

o u0+ulé+u262+...

vV =
uy = -1/ X
1
= -] — q where
Yk [m2k+l] k
k-1
Y = 93 Y%-il1 for k >0
i=0

q, =1 @)
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SYMBOL

v (iT)

Av

ni

W,
i

INFORMATION

Constant value of control force Y iterated

r times in a control sequence u(t)

ukr = (uk)r

Control variable vector in interval kT= t =< (k+1)T

r
T % ]Rxl
Saturation limit of control force

l I - 1
%l = 7

Repetitive control variable product function
U = rl u "2 urR
<k>" " Yk-1 *t° YR

Coefficients of expansion of cubic approximation
for ideal control force u in powers ofzx

u=vo+v1A+v2 A2+...

v cf . u

o k
v 3
v, = = 0
1 + 2 v
0 Z(S 0
2
v, = - v, v+ V1

o + 2 CS v,

¥ L K=J L?S {_, i k-i-j-]_
i= 3

Liapunov function assumed in quadratic form
vAT) = z (iT) [K] z (it)]
—

Free response component of norm change En

E_ = Av (;_< (nT)) + Aw(zc_(nT), un_l)

Weight for i'th state variable

w. sz W, = Tihi
ni i

Diagonal elements of transformation matrix W
Alternate choices investigated include

W, = Tj'hi/ il

1
't (J-i):/J.'
rnl

Hi
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REFERENCE

(4)

(4)

&)

(2)

)

(4)

Stability Study (3)

Stability Study (4)

Digital Simulation (1)

1)

(2)

1544-4
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SYMBOL

AY

xi(O)

%

x(0)
x(k)

x(kT)

x (T

y(t)

INFORMATION

Diagonal transformation matrix with elements

W,, =W,
11 i

E (T = W e (D
P
Elements of norm weighting transformation matrix

x, =W, h T ¢ Wy
i i

Alternate choices investigated include:

WN, =T /i !
1

Ti (J-i)i/J!

=7t

Forced response component of norm change from
t =nT to t = (n+l)T.

E =Ave am) + Av o, u )

Total control system output (associated with
Volterra Series description)

Estimated weighted response i'th state component

xi\O) =V e (0)

Output state vector

X = x(i) ] Nx1

Also

x = x(t)

Output state vector

x (t) = x

Estimated initial weighted response state vector
x(k) = X(kT)

Estimated weighted response state vector at
decision time t = kT

Weighted estimated free response state vector
State vector of forced response only

Change in forced response state over interval
2T &t < -T

Partial output state vector

-1
x (£) = y(t)+ A (6) Uy

Weighted norm of state vector x (uf)
2 s
HE(HT“H = [E(HT)] H [z(nT)]
Value of weighted normalized i'th state variable
X, =t -0/ g g

Free response in absence of any control input
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REFERENCE

(1)

(2)

Stability Study (4)

(4)

Digital Simulation (1)

(1)
(2)

(2)
89
(1)

9]

(%)

)

Parameter Studies (2)

@




SYMBOL

y (t)

¥{0)

Yp (T)

2]

A

N (eta)

K (Rappa)

/l (lamda)
z
l/k(nu)

£@ i)

INFORMATION

p'th Taylor coefficient in expansion of y(t)

v(t) = y_t
p=

Free response state vector y = y(l)] Nx1l
Also y = y (t)
Free response state vector y (t) =y

Estimated present valiue of weighted input or
reference state vector

Estimated weighted desired state vector one decision
interval into the future

Zeroes of plant transfer function

Response state vector at decision interval
t = iT

Z(i)] =[WNj éjk] C(i)]

Coefficient of linear term in second and third order
approximation of roots of contrcl equation for u

Second order approximation

2
l+avo+ 6\70 =0
Third order approximation

1+O(u+6u2+ Au3=0

order approximations of roots of control equation
for v

cf. (X =X

Coefficient of cubic term in third order approximation

of roots of control equation for uy
cf. XX Z&‘:l)(

Number of < n?3 sets which are considered
significant

Variable upper limit of integration in Volterra
functional series representation

(ki+l) T for ki-= X

t for ki = )(

Weighting factors in mean square determination of
coefficients A and
<ny pst "p

Measured on computed value of control force u, as
contaminated by stationary uncorrelated noise m

Measured value of the state vector x(t) as con-
taminated by stationary, uncorrelated noise n (t)

E@ = x(® +u (©
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REFERENCE

(%)

(&)
(4)

(1)

69

Digital Simulation (1)

Stability Study (3)

%)

4)

(4)

(%)

(4)

(4)

4)

(&)

(4)




S5YMBOL

T (tav)
i

X (chi)

Derivative Notation

€
J
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INFORMATION REFERENCE

Dummy time variables in Volterra series 4)

Maximum index of given control sequence

X = max ikl, Kys eee kY (&)

o

i'th time derivative of a variah’c\j .

If {7 is a state vector thisz :u i'th component. (L)

Chavge in a variable ( g ) over one previous
decision interval,

Lxample: Z&(n(O) = m (0) -m(-T) (1)

Time Conventions:

t denotes a ceontinuous time variable. For a given
control action, the origin ot t is nl decision in-
tervals in the past. Thus t has a floating origin.
The designaticns t = kT denote the (n+l) decision
intervals in the past., The arguments (t) und (kT)
are based on this time convention,

A different time convention with flcating origin at
time of present control action is also used,particu-
larly in the simulation studies. In this convention
the arguments (-T) (0), (D, respectively designate
times: one decision interval in the past, the prescnt
decision epoch, and one decision interval in the future.

Vector Notation: v or v designates a vector which may be in row or

columnar form,

5‘, v' designates the transpose of v or y

V(i)J explicitly designates thc columnar form
v explicitly designates the vow form
b norm of a vector v. Usually Nvil = v.v. )
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